Graceful migration to future generations of Passive Optical LAN

John Hoover, Senior Product Manager — Tellabs, Inc.

Tellabs is a pioneer in passive optical network (PON) technologies. In 2003, Tellabs lead the industry in the high volume commercial deployment of broadband PON. In 2005, Tellabs was one of the first companies to bring to market gigabit PON solutions. And in 2009, Tellabs is praised for the groundbreaking adaptation of PON for specific use for enterprise local area networks (LAN) applications. Today, Tellabs is credited with providing the equipment for the largest FTTH PON in North America as well as the largest Optical LAN (OLAN) in the world.

Now is the time to consider the impacts of future generations of PON. Back in 2010, Tellabs delivered 10 GbE PON OLT and ONTs for an international next generation PON initiative called scalable advanced ring-based passive dense access network architecture (SARDANA). Tellabs won the Global Telecoms Business Innovations Award in 2011 for this SARDANA work that proved the technical viability of 10 GbE PON and DWDM PON. Tellabs continues to leverage the success of the SARDANA deliverables relative to considerations for future high volume commercially viable future generation PON solutions that delivers 10 Gbps speed services.

Introduction

Tellabs’ goals for next generation 10 GbE PON are to make sure customer’s investment in Optical LAN is protected by eliminating rip-and-replace of electronics and cabling. The intent is to ensure customers have a future-proof graceful migration path as their network needs evolve with new services and application that may require greater bandwidth. Tellabs wishes to make certain that customers have cost effective next generation LAN choices. That is, Tellabs’ intent that the timing of 10 GbE solutions aligns with market demand, thus ensuring the latest technology, smallest sized, lowest power and best cost value is obtained. To that end, Tellabs is assessing the following macro topics in preparation towards delivering commercially viable next generation PON:

- Modern LAN traffic patterns
- Managing modern LAN bandwidth
- Future generation PON choices
- Tellabs’ space/material, power and cost innovations
- Tellabs’ Path to 10 GbE PON

Highlights

- Next generation 10 GbE PON will provide symmetrical transmission speeds
- Tellabs’ Optical LAN OLTs and ONTs equipment are designed taking into account future generation impacts
- Current single mode fiber cabling and passive optical splitters support next generation 10 GbE PON
- Tellabs’ powering solutions take into account the expected higher demands of 10GbE
- Today’s 2.4 GbE (ITU 984) ONTs will be supported alongside the new 10 GbE ONTs
- The upgrade to next generation 10GbE PON can be done on a per ONT (per super-user) basis

Modern LAN traffic patterns

10 years ago 80% of LAN traffic traveled peer-to-peer and thus stayed local. This was due to the fact that LAN infrastructure connected basically telephones and computer workstations. With today’s modern high performance LAN traffic, 90% of LAN traffic flows directly thru core router to wide area network (WAN). This is because modern high performance LAN transportation means for browser-based applications, virtual desktop, hosted/managed, cloud-based and wireless services.

In the past legacy copper based LANs were designed with racks and stacks of Ethernet switches connected by a tangled mess of meshed point-to-point cabling. This created the wasteful
one-to-one relationship of electronics, dedicated corporate resources and cabling for each peer-to-peer end user. The design was wasteful because the potential bandwidth capacity at the last 100m point-to-point cable connectivity was never fully realized across LAN nor the highly probably bottleneck across the WAN.

Optical LAN’s architecture better serves modern LAN traffic patterns. Its’ fundamental architecture is optimized for the most efficient path to the WAN. Optical LAN’s point-to-multipoint configuration minimizes the number of managed devices in the aggregation, distribution and access portion of the LAN. Optical LAN defines LAN resources in software and then dynamically allocates based on real time needs. The first benefit of this architecture is with fewer moving parts mean less things to buy, rack, stack, power, air condition, ventilate, provision, manage and fewer things to break. It also means fewer electrical-to-electrical and optical-to-electrical conversions as the LAN traffic travels to the WAN. With less electrical-to-electrical and optical-to-electrical conversions, LANs experience improved energy consumption, but they also gain the benefit of reduced latency.

Optical LAN has the same value proposition as cloud based services, application, computing and networking. Cloud architecture shifts expense, complexity, energy and space to a centralized shared location without compromising security. Optical LAN replicates those same cloud benefits and successes. If CIOs and IT pros embraces cloud technologies, then OLAN is accepted for all the same reasons.

Managing modern LAN bandwidth

In a 2013 study, Gartner Research looked at the future impact of high performance modern LAN video, wireless and cloud computing and offered forecast of projected peak bandwidth per user. The outcome of the research stated that heavy video, wireless and cloud computing would require bandwidth per user in the 1Mbps to 7 Mbps range. This is far below the 1Gbps and 10 Gbps fear mongering from the legacy copper based LANs equipment manufactures that continue to promote the purchase of more racks and more stacks of Ethernet switches.

What the Gartner Research study exposed was that an average corporate worker rarely needs more than 1 Mbps for emailing, web browsing, VoIP service, data center access, enterprise software, collaboration applications and other cloud-based services. Even high definition 1080p IP video telepresence systems ask for 15 Mbps connectivity. Wireless access points supporting IEEE 802.11n theoretical air interface maximum is 54 M, but design and planning guides call for 24 M Ethernet backhaul through-put. And then IEEE 802.11 ac, ad, dual radio WAPs state their theoretical air interface maximum is 600 Mbps and that their expected backhaul through-put will be 50% in most practical deployments. Once again, these bandwidth requirements are well below 1Gbps and 10 Gbps.

Optical LAN is better suited to handle modern LAN traffic patterns and bandwidth. Instead of legacy copper based LANs dedicated resources, Optical LAN defines resources in software and dynamically allocates those resources based on real time needs.

Figure 1: Graceful Migration to Future Generations of Passive Optical LAN
Future generation PON choices

Contemporary gigabit PON provides the capacity 2.4 Gbps in the downstream direction and 1.2 in the upstream direction. It follows Full Service Access Network (FSAN) recommendation that are ratified and published within ITU-T G.984 standards. It is widely deployed supporting millions of end users around the world. XG-PON1 and XG-PON2 is defined in ITU-T G.987 standards. XG-PON provided the framework for both asymmetrical (e.g. 10 Gbps ds and 2.4 Gbps us) and symmetrical (e.g. 10Gbps ds and 10Gbps us) transmission versions. Though there have been many demonstrations of XG-PON, including Tellabs’ SARDANA, the technology has not experienced commercial adoption. Next up is the industry work being focused on a collection of architectures under consideration for NG-PON2. NG-PON2 is inclusive of 40 Gbps PON and WDM PON versions and is progressing through the standards adoption process within the ITU-T G.989 framework.

All of these next generation PON options will deliver 10 Gbps transmission speeds. The FSAN and ITU have been very smart in identifying and preparing for all the future wavelengths required for XG-PON and NG-PON support. This ensures that there will be no wavelength conflict between today’s gigabit PON and future generations of PON. It also ensures that the different generations of PON will be able to co-exist over the same fiber plant infrastructure simultaneously. This provides protection for those who invest in fiber-based LANs today against the need to rip-and-replace electronics and/or cabling in order to support future generations of PON [Figure 1].

Tellabs’ space/material, power and cost innovations

Future generations of PON will have many choices and all of which will have the ability to deliver 10Gbps capacity. However, these higher speed 10 GbE PON solutions will come with a premium attached to space/material, power/thermals and costs. To balance the total 10 Gbe PON value proposition, Tellabs is working towards innovations relative to lowering space/material, power/thermals and costs impacts.

Space/Material Innovations — There are 4 areas where Tellabs innovations can help lower space and material impact of next generation 10 GbE PON. First, Tellabs will look to support 10 GbE into our existing line of small form factor in-wall and in-cubical mini ONTs. Next, it is a Tellabs goal to support both 2.4 GbE PON (ITU-984) and 10 GbE PON service from same OLT distribution shelf, thus providing cost savings. Third, Tellabs is reviewing the commercial viability of an one (1) rack unit small form factor OLT.

Finally, once 10 GbE PON is deployed it will make sense to use passive optical splitters with even greater split ratio than x:32. For example, higher density systems with x:64 and x:128 passive optical splitters will be more appropriate for many services/applications and lead to lower per port costs for the overall system.

Power Innovations — Tellabs has implemented IEEE 802.3az Energy Efficient Ethernet support on its’ latest generation of ONTs. 802.3az allows for idle gigabit Ethernet ports go into sleep mode. It is estimated that with 802.3az enabled, customers can enjoy ONT Ethernet port power savings in the 11–16% range. Future Tellabs ONTs are being targeted for PON uplink sleep-mode. PON uplink sleep-mode is where idle PON uplink port goes into cyclical sleep mode. Rough estimates calculate that an ONT idle 80% of the time can expect a sleep mode power savings estimated in the 30% neighborhood.

Cost Innovations — The greatest cost innovation provided by future generations of PON is the fact that today's single mode fiber, fiber management and passive optical splitters will still work. Not having another rip-and-replace event for either equipment or cabling will save huge amounts of money. A major piece of this graceful migration will be enabled by simultaneous support of 2.4 Gbe PON (ITU-984) and 10 GbE PON service cards in today’s OLT distribution shelves. With both 2.4 GbE PON (ITU-984) and 10 GbE PON service cards in a common OLT distribution shelf, 10 GbE upgrades will be managed at the ONT end-points. Next, cost savings will come from being able to support higher density systems with optical plant split ratio of x:64 and x:128 that will substantially bring down per port costs. Last, one (1) rack unit small form factor OLT will be targeted at a low cost point to make lower density deployments more cost effective.

Tellabs’ Path to 10GbE PON

Tellabs is developing a next generation 10 GbE PON solution. It will provide symmetrical capacity of 10 Gbps in both upstream and downstream directions. The first iteration of the next generation 10 GbE PON will consist of new high capacity Ethernet service unit (ESU), new 10 GbE PON service card and new 10 GbE ONT.

Next Generation High Capacity ESU — This next generation ESU will be equipped with “either” one (1) 40 GbE uplink or four (4) 10 Gbe network uplinks “and” four (4) 1 GbE network uplinks. It will be mandatory that a new ESU will be deployed in combination with next generation 10GbE PON service card, that will tap into required redundant 40Gbps capacity traces (e.g. 80Gbps total capacity per slot) for inter-shelf and card-to-card transmissions. Its’ first introduction will be in a form factor suitable for OLT1150E distribution shelf deployments and with OLT1134 version to be targeted at later date.
IS YOUR LAN READY FOR TOMORROW’S CHALLENGES?

Next Generation 10GbE PON service card — This next generation 10 GbE PON service card will be equipped with four (4) 10 GbE PON ports capable of 10 Gbps symmetrical service delivery. The new 10 GbE PON service card, in combination with new high capacity ESU, will tap into redundant 40 Gbps capacity traces (e.g. 80 Gbps total capacity per slot) for inter-shelf and card-to-card transmissions. There will be no wavelength conflict between today’s 2.4 GbE PON (ITU-984) card and 10 GbE PON card, thus both can be co-mingled in same OLT distribution shelf. Its’ first introduction will be in a form factor suitable for both OLT1150E and OLT1134 deployments (note: for OLT1134, the next generation OLT1134 ESU will be required).

Next Generation 10GbE PON ONT — There are two configurations of 10 GbE PON ONTs in planning:

- 10 GbE PON ONT with one (1) 10 GbE port and five (5) 1 GbE ports
- 10 GbE PON ONT with four (4) 1 GbE ports

The size of these ONT is on-track to be similar to ONT140C and ONT709GP. Tellabs is assuming that these 10 GbE PON ONTs will come with an estimated 5 watts increase in power consumption. This 5 watts assumption is most likely high, but ensures Tellabs designs infrastructure deployed today, including powering systems, that will support future 10 GbE ONTs.

Tellabs’ current development plan of record targets the new high capacity ESU, new 10 GbE PON service card and new 10 GbE ONT for availability in 2015. The development, release, and timing of features or functionality described for Tellabs’ products remains at Tellabs’ sole discretion. The information that is provided within this paper is neither a commitment nor legal obligation to deliver any material, code or functionality.

Summary

Ultimately Tellabs’ goal is to design Optical LAN solutions taking into account next generation impacts (e.g. wavelengths, powering, size, etc...). We will work to prove that current single mode fiber cabling and passive optical splitters will support next generation 10 GbE PON solutions. And that today’s 2.4 GbE (ITU 984) ONTs will be supported alongside the new 10 GbE ONTs, thus providing a graceful migration to next generation 10 GbE PON can be done on a per ONT (per super-user) basis. By delivering on these goals, Tellabs will add one more chapter to its’ pioneering achievements, thus including successful implementation of commercially viable next generation 10 GbE PON solutions.

Take the next step. Contact Tellabs today.